Functional and structural properties of a novel cellulosome-like multienzyme complex: efficient glycoside hydrolysis of water-insoluble 7-xylosyl-10-deacetylpaclitaxel
نویسندگان
چکیده
Cellulosome is a kind of multienzyme complex that displays high activity, selectivity, and stability. Here, we report a novel, non-cellulolytic, cellulosome-like multienzyme complex that produced by the Cellulosimicrobium cellulans wild-type strain F16 isolated from soil microflora. This multienzyme complex, with excellent catalytic efficiency of kcat 13.2 s(-1) to remove the C-7 xylosyl group from 7-xylosyl-10-deacetylpaclitaxel (10-DAXP), has an outstanding tolerance against organic solvents and an excellent general stability, with the long half-life of 214 hours. This cellulosome-like multienzyme complex has a novel structure distinct from the well-documented ones. The key catalytic subunit responsible for the β-xylosidase activity against 10-DAXP is identified to be a novel protein, indicating a new glycoside hydrolase (GH) family. The pioneering work described here offers a novel nanoscale biocatalyst for the production of biofuels and chemicals from renewable plant-based natural resources.
منابع مشابه
Activation of the mitochondria-driven pathway of apoptosis in human PC-3 prostate cancer cells by a novel hydrophilic paclitaxel derivative, 7-xylosyl-10-deacetylpaclitaxel.
Paclitaxel, a natural product originally isolated from Taxus brevifolia, belongs to the most successful anticancer drugs. Nevertheless, its poor water solubility represents a considerable disadvantage in clinical use, and novel derivatives with improved pharmacological features are required. We isolated 7-xylosyl-10-deacetylpaclitaxel from Taxus chinensis, which reveals higher water solubility ...
متن کاملAssembly of Xylanases into Designer Cellulosomes Promotes Efficient Hydrolysis of the Xylan Component of a Natural Recalcitrant Cellulosic Substrate
UNLABELLED In nature, the complex composition and structure of the plant cell wall pose a barrier to enzymatic degradation. Nevertheless, some anaerobic bacteria have evolved for this purpose an intriguing, highly efficient multienzyme complex, the cellulosome, which contains numerous cellulases and hemicellulases. The rod-like cellulose component of the plant cell wall is embedded in a colloid...
متن کاملCellulase-Xylanase Synergy in Designer Cellulosomes for Enhanced Degradation of a Complex Cellulosic Substrate
Designer cellulosomes are precision-engineered multienzyme complexes in which the molecular architecture and enzyme content are exquisitely controlled. This system was used to examine enzyme cooperation for improved synergy among Thermobifida fusca glycoside hydrolases. Two T. fusca cellulases, Cel48A exoglucanase and Cel5A endoglucanase, and two T. fusca xylanases, endoxylanases Xyn10B and Xyn...
متن کاملColocalization and Disposition of Cellulosomes in Clostridium clariflavum as Revealed by Correlative Superresolution Imaging
Cellulosomes are multienzyme complexes produced by anaerobic, cellulolytic bacteria for highly efficient breakdown of plant cell wall polysaccharides. Clostridium clariflavum is an anaerobic, thermophilic bacterium that produces the largest assembled cellulosome complex in nature to date, comprising three types of scaffoldins: a primary scaffoldin, ScaA; an adaptor scaffoldin, ScaB; and a cell ...
متن کاملThe contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons
BACKGROUND Clostridium thermocellum is a thermophilic anaerobic bacterium that degrades cellulose by using a highly effective cellulosome, a macromolecular complex consisting of multiple cellulose degrading enzymes organized and attached to the cell surface by non-catalytic scaffoldins. However, due largely to lack of efficient methods for genetic manipulation of C. thermocellum, it is still un...
متن کامل